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Based on the linear Boltzmann transport formulation, we investigate the 
statistics of correlated exponential random walks that are continuous in space 
and discrete in time. We show that asymptotically, the correlated random walk 
process is diffusive and derive an effective diffusion constant. We investigate the 
power spectral characteristics of. the associated random forces. We also present 
some results on the first passage time distribution and establish that 
asymptotically it reduces to that associated with simple Gaussian walks. 
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1. I N T R O D U C T I O N  

Recently, there have been numerous studies on the correlated random walk 
(CRW) and its characteristics./1 6/ These walks were first introduced by 
Taylor ~71 and extensively investigated by Goldstein./81 The CRW can be 
considered as the simplest example of a multistate random walk. (9) For  a 
review and references to some early work on this subject, see Ref. 10. The 
interest in CRW stems from the fact that it provides useful models in the 
study of several diffusion problems in physics, chemistry, biology, and 
sociology.(11 20/ Also, recently these walks have found some interesting 
applications in problems on neutron transport in media with anisotropic 
scatterers.(2~ 24) 

The characteristics of CRW that are of interest are the conditional 
spatial probability distribution, the first passage time distribution, (26,27) and 
the power spectrum of the associated noise sources. ~4) The asymptotic form 
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of the spatial probability distribution of the CRW has been shown to be 
Gaussian.(l 8) Specifically, the interest is in the asymptotic nature of the 
variance of the spatial distribution. (1'3'4'1~ 

The general procedure adopted in the studies of CRW consists in con- 
sidering random walks on a one-dimensional lattice with nearest neighbor 
jumps. The random walk starts at the origin and jumps to the left (right) 
site with probability eo (/~0 = 1 - e0)- In the subsequent steps one defines 
as the probability for the random walk to persist in its direction and /~ 
( = 1 - ~ )  as the probability to reverse its direction. A set of recursion 
relations is written for the process and solved under a suitable continuum 
limit. 

It is known that the diffusion equation describes the asymptotic 
behavior of continuous space random walks generated by arbitrary jump 
density with finite second moment and is also the continuum limit of sim- 
ple lattice walks. (28~ It is not clear, however, whether one can write down 
directly a differential equation for describing the CRW generated by a 
Gaussian jump density. The continuum limit of the discrete recursion 
relations established for the CRW on a lattice can be obtained (see, for 
example, Ref. 4). Indeed, it has been shown (see, for example, Ref. 10) that 
in the continuum limit of the lattice and time, the CRW is described by the 
diffusion equation (for arbitrary c~) and by the telegrapher's equation in the 
limit c~ ~ 1. 

It is the purpose of this paper to show that a set of difference-differen- 
tial equations can be obtained for describing discrete time and continuous 
space correlated walks generated by exponential jump density, by making a 
suitable analogy to the linear Boltzmann transport equation. The 
derivation of the equations is accomplished by considering balance con- 
ditions for the random walks entering, exiting, and getting removed in an 
infinitesimal line segment. The details of the derivation are given in Sec- 
tion 2, where we also show that in the continuous time limit the set of 
equations reduce to the telegrapher's equation. In Section 3, we present 
some numerical results on the first passage time distribution and derive 
analytic expressions for describing its asymptotic behavior. We show that 
in the asymptotic region, the first passage time distribution of the CRW 
process reduces to that associated with Gaussian random walks. We 
present in Section 4 results on the power spectrum of the stationary noise 
that drives the correlated random walk process. Our results also show the 
phase transition-like phenomenon reported in Ref. 4. But we find the 
process to be diffusive, asymptotically for all values of c~, unlike the collap- 
sed (for e = 0) or deterministic (for ~ = 1) behavior reported in Ref. 4. The 
principal conclusions of the study are brought out in Section 5. 
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2. M A T H E M A T I C A L  F O R M U L A T I O N  

In this section, we derive from first principles a coupled set of dif- 
ference-differential equations for describing the spatial probability dis- 
tribution of the correlated exponential random walk process in one dimen- 
sion. To this end we define pR(x, n)dx and PL(x, n)dx as the probability 
of the random walk to be at x within dx after n number of jumps and 
moving to the right and left, respectively. The probability for the random 
walk starting off from a point to visit a site at a distance x within dx in a 
single step is given by a negative exponential density, 

f (x )  = 2 i exp ( -x /2 )  (1) 

where 2 is a known parameter. Having jumped to the site, the walk can 
persist in its direction with probability c~ or reverse its direction with 
probability/~ = 1 - e. 

Next we consider an infinitesimal line segment Ax at x, and set up a 
balance equation for the loss and gain of n-step, right-directed random 
walks. The loss terms arise due to (1)net transport, given by 

PR(x + Ax, n) - PR(x, n) = 
OPR(x, n) 

~x 
Ax (2) 

and (2) the termination at x within Ax, which, by virtue of the exponential 
jump density, is given by ,~-IpR(x, n)Ax. The gain term comes from the 
right- and left-directed random walks after the ( n - 1 ) t h  step at x within 
Ax, and persisting and reversing the direction. The gain term is thus given 
by 

2-~ [c~pR(x, n-- 1) + flPL(x, n-- 1)] 3x (3) 

Thus, balancing the gain and the loss terms, we get for the right-directed 
n-step walks a recursion relation given by 

c3pR(x, n) 

0X 
t-2 IPR(x,n)=2--1[~pR(x,n--1)+f lPL(x,n--1)]  (4) 

Similarly, for the n-step left-moving random walks, we get 

~PL(x, n) 
c~x t-2 1pL(x,n)=,~ I[~PL(x ,n- - I )+f lPR(x ,n- -1)]  (5) 
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The coupled recursion relations (4) and (5) are for n >  1. For  n =  1, 
however, we have the source conditions given by 

o p R ( x ,  n = 1)  
OX ~ ~- tpR(x ,  n = 1) = SR(x) (6) 

opL(x, n=  1) 

3x 
t- 2-1pL(x,  n = 1) = S L ( x )  

We choose the source distribution as 

(7) 

SR(x) = 6(x)/2 ( 8 )  

S L ( x )  = 6(x)/2 (9) 

The above choice of source distribution implies that the first step is sym- 
metric in its direction. 

Let us now define 

P(x, n) = pR(x, n) + pL(x, 1l) (10) 

Y(x, n)= pR(x, n ) -  pL(x, n) (11) 

Then we get 

3J(x, n) 
0x 

- - + 2  iP(x,n)=2 1P(x,n-1) ,  n > l  

= 6 ( x ) ,  n = 1 

OP(x, n) t- 2 1J(x, n) = 2-1(2~ - 1 ) J(x, n - 1 ), 
#x 

=0,  

n > l  

n = l  

(12) 

(13) 

The above equations can be easily reduced by eliminating J(x, n) to yield 

02p(x, n) 
~x 2 - 2 2  2 ( l - ~ ) [ P ( x , n ) - P ( x , n - 1 ) ]  

+ 2-2(2c~ - 1)[P(x,  n) -2P(x ,  n -  1) + P(x, n -  2)], 

O2p(x,n) 
8x 2 

Q2P(x, n) 

-2 -2P(x ,  n)+ 22-Zc~P(x, n -  1 ) + 2  1(2c~- 1) 6(x), 

n > 2  

(14) 

n = 2  

(15) 

~x 2 = 2 - 2 p ( x , n ) - 2  16(x), n = l  (16) 
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In order to obtain a continuum limit of Eq. (14), we let nr = t and Taylor 
expand P(x,  t -  ~) and P(x, t - 2~) up to the second order in ~. We then get 

a2P(x, t) 2(1 -c~)~ c3P(x, t) ez 2 02P(x,  t) 
~x ~ - 2 ~  ~?~- t -  22 c3t2 (17) 

We next consider the matter  of scaling. Two cases emerge. In the first case 
we take the limits 2 and ~ ~ 0 such that 

lira - - = D  O (18a) 

When the above substitution is made in Eq. (14) we get the diffusion 
equation 

OP(x, t) ~2t'(x, t) 
- - - D  - -  (18b) 

0t Ox 2 

with diffusion constants D = Do~2 ~. In the second case we take the limit 2, 
~, and/3 ( =  1 -  e ) ~  0, such that 

lira f / 2 z = V  (18c) 
; ~ 0 , ~ - ~ o , ~ 0  { r / / ~  = T 

Then we get 

02p(x, l) 2 OP(x, t) 1 02P 
(18d) Ox 2 V2T (~t V 2 ~,t 2 

The above is the telegrapher's equation (see, e.g., Ref. 10), where the con- 
stants V and T have the dimensions of velocity and time, respectively. 

However, if we set e = �89 in Eq. (14), we recover, under the continuum 
limit, the diffusion equation with a diffusion constant Do. 

3. FIRST PASSAGE T I M E  D ISTRIBUTION 

In this section we consider the CRW on the real line extending from 
- o e  to L > 0. The walk starts at the origin and its initial direction is sym- 
metrically distributed. We define a random variable N that denotes the 
number of steps the walk takes to cross the barrier for the first time. We 
want to obtain H(N),  the probability distribution of the first passage 
time N. 
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Formally, the first passage time distribution can be written as 

H(N)  = 2-1[P(x,  N -  1 ) -  P(x, N)] dx (19) 
09 

where P(x, N) is the solution of Eq. (14) with suitable boundary condition. 
Using Eq. (12) in the above, we can write 

H(N)  = f L OJ(x, N) dx = J(x = L, N) (20) 
- -  ~x~ ( ~ X  

The appropriate boundary condition for this problem is 

PL(x = L, N) = 0 for all N (21) 

which implies 

P(x = L, N) = J(x = L, N) (22) 

Thus, for determining I I (N)  we need only to solve Eqs. (14) (16) with the 
required boundary conditions and get P ( x = L ,  N). To this end, we 
introduce a discrete transform of variable N to S as 

/5(x, s ) =  ~ exp[--S(n - 1)] P(x, n) 
n = l  

Using the above in Eq. (14)-(16), we get 

82p(x, s ) _  2_ 2a(s ) b(s) P(x, s ) -  2-1b(s) 6(x) 
Ox 2 

where 

(23) 

(24) 

a(S)-= 1 - e  - s  ( 2 5 )  

b(S) = 1 - (2ct- 1) e - s  (26) 

Equation (24) can be readily solved, and using Eqs. (20) and (22), we get 

/7(S) = {1 + [a(S)/b(S)] 1/2 } -1 exp{ - ( L / 2 ) [ a ( S )  b(S)] 1/2 } (27) 

Formally, H(S) can be expanded in powers of e - s  and the coefficient of 
e us would yield the required H(N),  This has been carried out employing 
a simple numerical procedure and the results are shown in Fig. 1 for the 
values of ~ = 0.0, 1/3, 1/2, and 2/3 and 2 = 1. A closed-form expression for 
the asymptotic behavior of H(N)  can, however, be obtained as follows. We 
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Fig. 1. Plot of the first passage time distribution for various values of cc (--) 0.0, (- -) 1/3, 
(-- --) 1/2, and (-----) 2/3. 

let S--* 0 in Eq. (24) (keeping in mind that ~ is not close to unity) and 
obtain 

Lt H(S)  = e x p [ - L ( S / D )  u2] (28) 
S ~ 0  

The Laplace inverse of the above expression is 

HA (T) = L [ T(4HD T) ~/2 ] ~ exp ( - L 2/4D T) (29) 

The above expression is clearly the first passage time associated with simple 
Gaussian walks (see, e.g., Ref. 30). 

Setting, S = 0  in Eq. (27), we find t h a t / I ( S =  0) = 1. This implies that 
the first passage time distribution H(N)  is properly normalized, and this 
establishes the "gambler's ruin" for such correlated games. 



760 John and Murthy 

4. S P E C T R A L  C H A R A C T E R I S T I C S  OF D R I V I N G  NOISE 

In this section we investigate the power spectral characteristics of the 
noise that drives the CRW. To motivate this, let us consider a process dic- 
tated by the Langevin equation: 

dx(t)/dt = r/(t) (30) 

where t/(t) is the driving noise. If t/(t) is stationary, Gaussian, and white, 
then x(t)  is the Weiner process, which describes the continuum of Gaussian 
walks. Thus the Langevin equation provides an alternative to the diffusion 
equation. The Langevin description has its own advantages, especially for 
problems where we are interested only in the first few moments of the 
process. 

In the same spirit we wish to obtain the corresponding Langevin 
model for the CRW process, in other words, we wish to characterize the 
color of the stationary noise t/(t) in Eq. (30) that would render x(t)  a 
correlated process. It is clear that the power spectrum of rift) would depend 
on the parameter c~ and we would like to characterize this dependence. 

The power spectral density of ~/(t) is given by (see Ref. 4) 

~b(co) = -�89 E {x2(t) ) ] = -�89176 (31) 

where Y is the Fourier-Laplace transform operator. 
In our problem, since we are concerned with discrete time, we employ 

the discrete transform defined by Eq. (23) with S =  iw, and formally express 
the power spectrum of driving noise as 

~b(w) = [ 1 - exp( - iw)] 2 Mz(iW) 

where M2(iw) is obtained by using Eq. (24) and is 

(32) 

2 
JfI2(iw) =~-5 [1 - e x p ( - i w ) ]  211 - (2c~- 1) exp ( - iw) ]  1 (33) 

Inserting the above in Eq. (32), we get 

q~(w) = (1/2Z2)[fl 2 + (2cr 1) sin2(w/2)] 1 

x { [fl + (2c~ -- 1) sin2(w/2)] + (i/2)(2c~ -- 1) sin w} (34) 

The real and imaginary parts of the power spectrum are depicted in 
Figs. 2 and 3, respectively, for the cases with c~ = 0, 1/3, 1/2, and 2/3. For 
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Fig. 2. Plot of the real part of the power spectrum versus frequency for various values of ~: 
( ) 0.0, (- -) 1/3,(----) 1/2, and (-----)  2/3. 

= 1/2 we recover the white spectrum, as expected. The results depicted in 
Figs. 2 and 3 agree qualitatively with those reported in Ref. 4. However, we 
get a white spectrum even for c~ = 0, arising due to diffusion associated with 
the randomness in the step size of the random walk. The power spectrum 
shows distinct features in two phases, a "collapsed phase" and "counter dif- 
fusive phase" characterized by e < 0 . 5  and c~>0.5, respectively, thus 
exhibiting phase transition-like behavior around the isotropic critical point 

= 0.5. In the limit of w ~ 0, ~(w) reduces to that reported in Ref. 4 except 
for a small deviation arising due to the difference in the effective diffusion 
constant. This phase breaking is a consequence of the anisotropy. This pic- 
ture, in addition to being a model for anisotropic neutron transport, as 
shown in this paper, could also be useful to study several different physical 
systems that can be described by correlated processes. 

8 2 2 / 4 5 / 3 - 4 - 2 6  
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Fig. 3. 
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Plot of the imaginary part of the power spectrum versus frequency for various values 
of ~: ( ) 0.0, (- -) 1/3, (----)  1/2, and (-----) 2/3. 

6. CONCLUSIONS 

The main aim of this paper has been to present a formulation that 
interprets the stationary linear Boltzmann transport equation as providing 
a natural description for discrete time, continuous space exponential walks. 

We have applied this formulation to investigate three important 
characteristics of correlated random walks. We show that the process is dif- 
fusive asymptotically and derive an expression for the effective diffusion 
constant. Our results on the spectral characteristics of the noise that drives 
the CRW agree qualitatively with those reported earlier. (4) We have also 
presented some results on the first passage time distribution and shown 
that it reduces asymptotically to that associated with simple Gaussian 
walks. 
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